

Construction of yearly schedules for train drivers

Héloïse Gachet
Supervisor: Frédéric Meunier

Plan

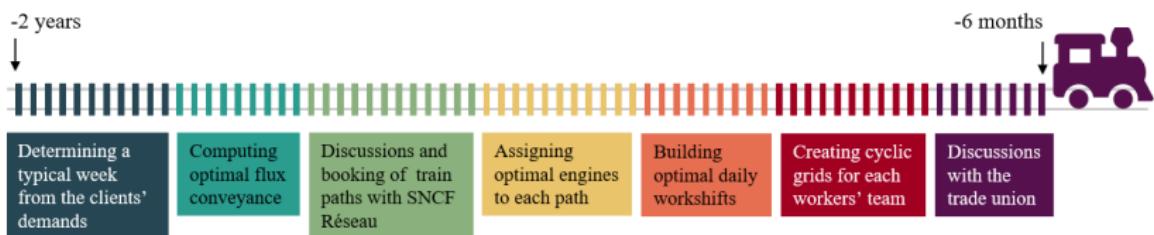
1 Cyclic grids at SNCF

Introduction

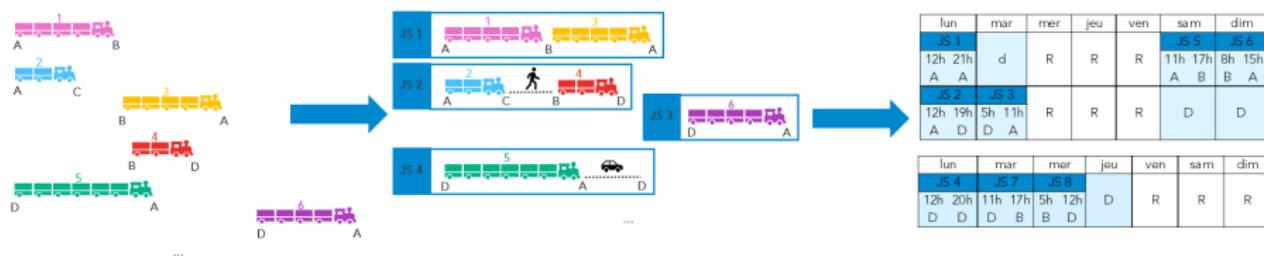
Problem description

Generalities on Linear Programming

Model


Results

2 Balanced assignments


Introduction

- ▶ 18% of rail freight in Europe (10% in France)
- ▶ Between 1800 and 2000 trains per week
- ▶ Many differences with passengers transportation...
 - ▶ Trains mostly at night
 - ▶ Priority goes to passengers
 - ▶ Client satisfaction: delivery on time
 - ▶ Key goal: reducing operational costs

Resource planning

Problem description

High combinatorial complexity

National input:

1 800 trains

1 000 repositionings → 200 000 workshifts → ... “shift blocks”

Linear Programming

The “best” cocktail ever
a.k.a. continuous knapsack problem

1-Orange juice
40 mL
★★★

2-Grenadine
10 mL
★★★★

3-Coconut milk
60 mL
★★★★★

4-Lemonade
20 mL
★★

$$\begin{aligned}
 \text{Max} \quad & \sum_{i \in [4]} \star_i x_i \\
 \text{s.c.} \quad & \sum_{i \in [4]} x_i \leq V_{tot} \\
 & x_i \in [0, v_i] \quad \forall i \in [4]
 \end{aligned}$$

Mixed Integer Linear Programming

The “best” tea-time ever

a.k.a. 0-1 knapsack problem

1-Best cocktail

1kg

2-Cookies

3kg

3-Board game

1.5kg

4-Chocolate

0.5kg

$$\begin{aligned}
 \text{Max} \quad & \sum_{i \in [4]} \text{☺}_i x_i \\
 \text{s.c.} \quad & \sum_{i \in [4]} w_i x_i \leq W_{tot} \\
 & x_i \in \{0, 1\} \quad \forall i \in [4]
 \end{aligned}$$

Modeling and numerous variables

Bin-packing problem

$$\begin{aligned}
 \text{Min} \quad & \sum_i y_j \\
 \text{s.c.} \quad & \sum_j x_{ij} = 1 \quad \forall i \\
 & \sum_i w_i x_{ij} \leq W_{tot} y_j \quad \forall j \\
 & x_{ij} \in \{0, 1\} \quad \forall i, j \\
 & y_j \in \{0, 1\} \quad \forall j
 \end{aligned}
 \quad \text{OR}$$

$$\begin{aligned}
 \text{Min} \quad & \sum_c z_c \\
 \text{s.c.} \quad & \sum_c n_{i \in c} z_c = N_{tot,i} \quad \forall i \\
 & z_c \in \mathbb{N} \quad \forall c \in \mathcal{C}
 \end{aligned}$$

Model

$$\begin{aligned}
 \text{Min} \quad & \sum_{w \in W} \sum_{b \in B_w} c_b x_{b,w} \\
 \text{s.c.} \quad & \sum_{w \in W} \sum_{\substack{b \in B_w \\ t \in b}} x_{b,w} \geq 1 \quad \forall t \in T \\
 & x_{b,w} \in \{0, 1\} \quad \forall w \in W, \forall b \in B_w
 \end{aligned}$$

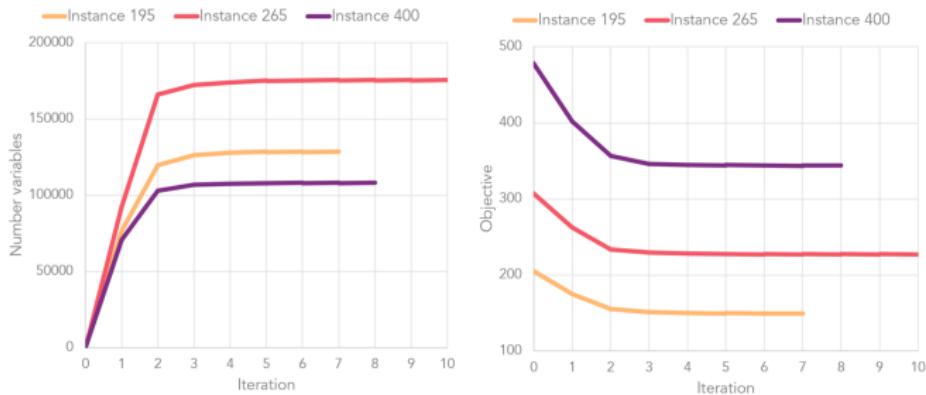
B_w = set of feasible “shift blocks” for the workers’ team w
 → combinatorial explosion

Column Generation: standard resolution methodology of a linear program when the number of variables is large

Variables Generation

Generation of variables throughout the resolution

Issue: Solving the pricing sub-problem **quickly**


For our problem:

Generation of a new variable = Solving a **Resource Constrained Shortest Path** problem

- **NP-hard** problem
- **Modeling challenges**

Results

	Objective			Total time	Nb iterations	Nb variables
	Sequential	Lower bound	Upper bound			
Instance 195 trains	176	149.9	151 (-14%)	15min31	8	128 527
Instance 265 trains	261	227.3	229 (-12%)	28min13	11	175 716
Instance 400 trains	402	344.2	347 (-13%)	32min46	9	108 150

Plan

1 Cyclic grids at SNCF

2 Balanced assignments

Introduction

Definition and examples

First results

Side note on complexity

Richer extension

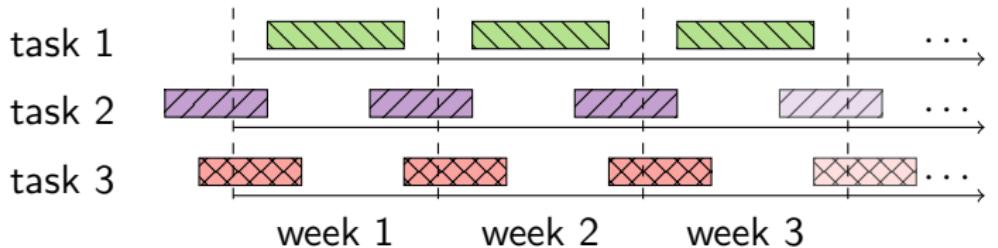
Idea of the proof

Cyclic grids

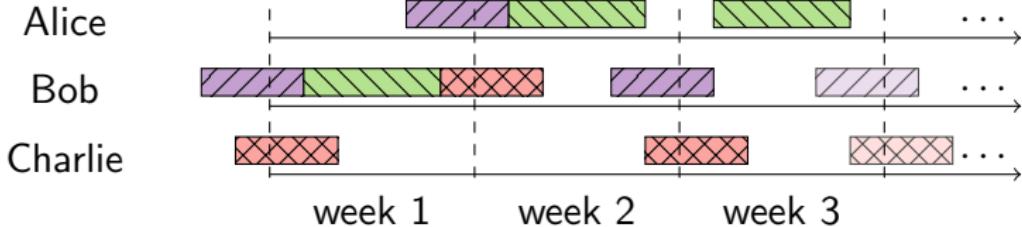
lun	mar	mer	jeu	ven	sam	dim
JS 1	d	R	R	R	JS 5	JS 6
12h 21h A A					11h 17h A B	8h 15h B A
JS 2	JS 3	R	R	R	D	D
12h 19h A D	5h 11h D A					

lun	mar	mer	jeu	ven	sam	dim
JS 4	JS 7	JS 8	D	R	R	R
12h 20h D D	11h 17h D B	5h 12h B D				

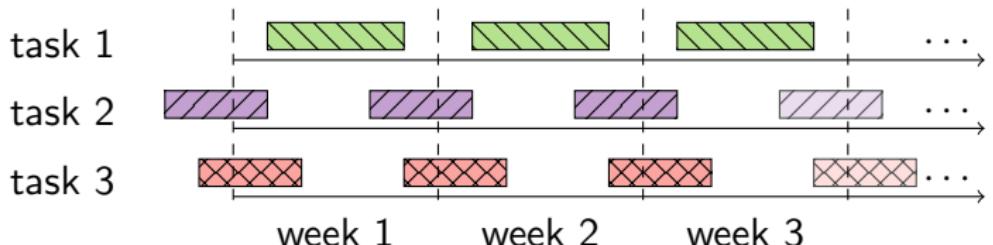
Introduction

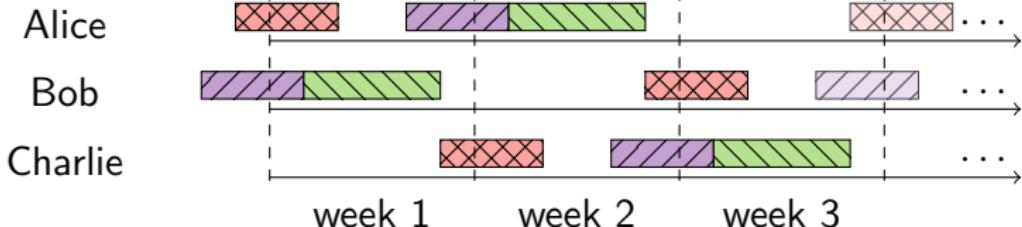

Input:

- ▶ Tasks to be performed at the same time every week
- ▶ Indistinguishable workers


Output: Assignment of tasks to workers so that each worker performs each task with same asymptotic frequency

e.g., *Monday from 9:10 to 10:30, drive train 9015 from Paris to Lyon with Alice, Bob, or Charlie*


Feasible assignment

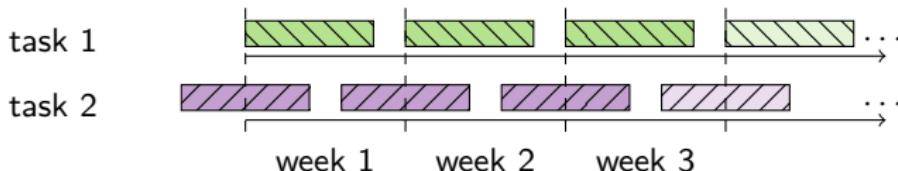

↓ feasible assignment

Balanced assignment: an example

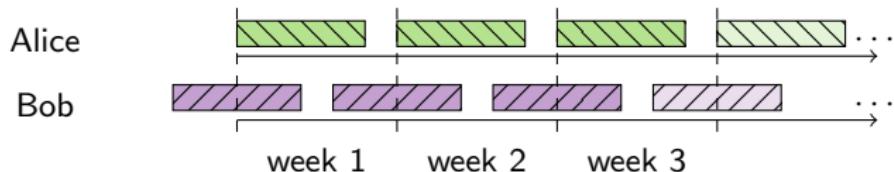
balanced feasible assignment

Balanced assignment: formally

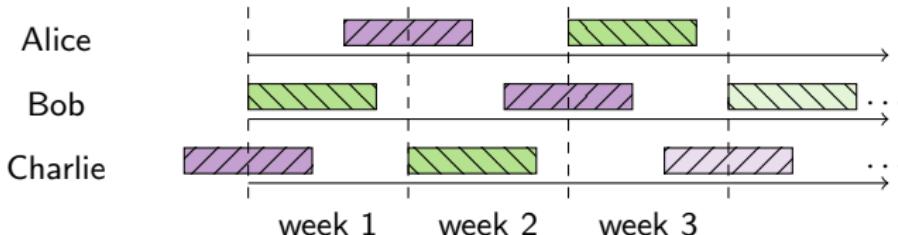
Input: n tasks to be repeated every week, q workers

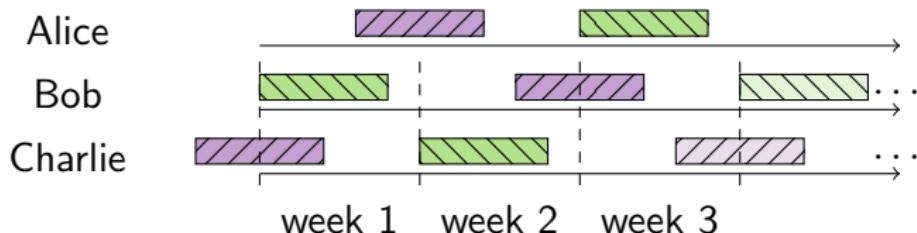

Assignment: $f: [n] \times \mathbb{Z}_{>0} \rightarrow [q]$, where $f(i, r) = j$ means worker j performs task i on week r

Feasible assignment: f is non overlapping


Balanced assignment:

$$\lim_{t \rightarrow +\infty} \frac{1}{t} \left| \{r \in [t] : f(i, r) = j\} \right| = \frac{1}{q} \quad \forall i, j$$


Balanced assignments: unachievable case


With 2 workers

With 3 workers

First results

Theorem G.-Meunier 2024+

There exists a balanced feasible assignment if and only if there exists a feasible assignment with a worker performing each task at least once.

→ *Elementary proof*

Side note on complexity

- ▶ **Polynomial problems**

ex: *The “best” cocktail i.e. continuous knapsack problem*

- ▶ **NP-hard problems**

- ▶ **Weakly**

ex: *The “best” tea-time i.e. 0-1 knapsack problem*

- ▶ **Strongly**

ex: *Bin-packing problem*

One of the Millennium Prize Problems: $P = NP?$

Side note on complexity

► **Decision problem**

ex: Given $n \in \mathbb{N}$, does it have a non-trivial factor?

→ polynomial ¹

► **Construction problem**

ex: Given $n \in \mathbb{N}$, find a non-trivial factor of n if it exists?

→ ?

¹https://en.wikipedia.org/wiki/AKS_primality_test

First results

Theorem G.-Meunier 2024+

Deciding whether there exists a balanced feasible assignment can be done in polynomial time.

Theorem G.-Meunier 2024+

Suppose the number of workers fixed. Building a balanced feasible assignment, if it exists, can be done in polynomial time.

Richer extension

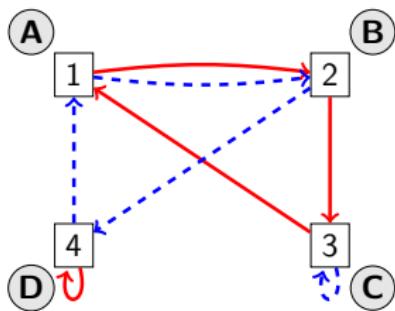
- ▶ Maximal number of tasks per week

Theorem G.-Meunier 2024+

If there exists a feasible assignment with a worker performing each task at least once and **all workers are busy at time zero**, then there exists a balanced feasible assignment.

Moving pebbles

Consider:


- ▶ graph $D = (V, A)$ with colors on the arcs, each color on a collection of vertex disjoint cycles covering V
- ▶ one pebble on each vertex

Sequence of colors defines sequence of moves of the pebbles

Color:

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

arcs visiting:

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	0	0	0	0	0	0	0
B	0	1	0	0	0	0	0	0
C	0	0	1	0	0	0	0	0
D	0	0	0	1	0	0	0	0

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	1	1	0	0	0	0	0	0
B	0	1	1	0	0	0	0	0
C	1	0	1	0	0	0	0	0
D	0	0	0	2	0	0	0	0

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -> → -> -> → -> -> → →
-> -> -> → -> → → -> → → -> ->

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	1	1	1	0	0	0	0	0
B	1	1	1	0	0	0	0	0
C	1	1	1	0	0	0	0	0
D	0	0	0	3	0	0	0	0

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → → → → → → → → → → →
→ → → → → → → → → → → → →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	1	1	0	1	0	0	0
B	1	1	1	0	0	1	0	0
C	1	1	1	0	0	0	1	0
D	0	0	0	3	0	0	0	1

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -> → -> -> → -> -> → →
-> -> -> → -> → → -> → → -> ->

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	1	2	1	0	1	0	0	0
B	1	1	1	1	0	1	0	0
C	1	1	2	0	0	0	1	0
D	1	0	0	3	0	0	0	1

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	1	0	1	0	1	0
B	1	1	1	1	0	1	0	1
C	1	1	2	0	1	0	1	0
D	1	0	0	3	0	1	0	1

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	1	0	1	0	2	0
B	1	1	1	1	1	1	0	1
C	1	1	2	0	1	1	1	0
D	1	0	0	3	0	1	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	0	1	0	2	0
B	1	2	1	1	1	1	0	1
C	1	1	2	1	1	1	1	0
D	2	0	0	3	0	1	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	0	2	0	2	0
B	1	2	1	1	1	1	1	1
C	1	1	2	1	1	1	1	1
D	2	0	0	3	0	2	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	0	2	1	2	0
B	1	2	1	1	1	1	2	1
C	1	1	2	1	2	1	1	1
D	2	0	0	3	0	2	0	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	1	2	1	2	0
B	1	2	2	1	1	1	2	1
C	1	2	2	1	2	1	1	1
D	3	0	0	3	0	2	0	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	2	2	1	2	0
B	2	2	2	1	1	1	2	1
C	1	2	3	1	2	1	1	1
D	3	1	0	3	0	2	0	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → → → → → → → → → → →
→ → → → → → → → → → → → →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	2	2	1	2	1
B	2	2	2	1	1	2	2	1
C	1	2	3	1	3	1	1	1
D	3	1	0	3	0	2	1	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	2	3	1	2	1
B	2	2	2	1	1	2	2	2
C	1	2	3	1	3	2	1	1
D	3	1	0	3	0	2	2	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → → → → → → → → → → →
→ → → → → → → → → → → → →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	2	3	2	2	1
B	2	2	2	1	2	2	2	2
C	1	2	3	1	3	2	1	2
D	3	1	0	3	0	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	3	3	2	2	1
B	2	3	2	1	2	2	2	2
C	2	2	3	1	3	2	1	2
D	3	1	1	3	0	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → → → → → → → → → → →
→ → → → → → → → → → → → →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	2	2	3	3	2	2	2
B	2	3	2	1	2	2	3	2
C	2	2	3	1	3	3	1	2
D	3	1	1	3	1	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → → → → → → → → → → →
→ → → → → → → → → → → → →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	2	2	2	3	3	2	2	2
B	2	3	3	1	2	2	3	2
C	2	2	3	2	3	3	1	2
D	3	2	1	3	1	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → → → → → → → → → → →
→ → → → → → → → → → → → →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	2	3	2	3	3	2	2	2
B	3	3	3	1	2	2	3	2
C	2	2	3	3	3	3	1	2
D	3	2	2	3	1	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	2	3	2	3	3	2	3	2
B	3	3	3	1	2	3	3	2
C	2	2	3	3	3	3	1	3
D	3	2	2	3	2	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	2	3	3	3	3	2	3	2
B	3	3	3	2	2	3	3	2
C	3	2	3	3	3	3	1	3
D	3	3	2	3	2	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	3	3	3	3	3	2	3	2
B	3	3	3	3	2	3	3	2
C	3	3	3	3	3	3	1	3
D	3	3	3	3	2	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	3	3	3	3	3	3	3	2
B	3	3	3	3	2	3	3	3
C	3	3	3	3	3	3	2	3
D	3	3	3	3	3	2	3	3

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ → → -→ → -→ -→ → -→ -→ → →
-→ -→ -→ → -→ → → -→ → → -→ -→

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 -> 2	2 -> 4	3 -> 3	4 -> 1
A	3	3	3	3	3	3	3	3
B	3	3	3	3	3	3	3	3
C	3	3	3	3	3	3	3	3
D	3	3	3	3	3	3	3	3

Back to the results

Theorem G.-Meunier 2024+

If the graph is strongly connected, then there exists a sequence of colors making each pebble visit each arc with same asymptotic frequency.

2 proofs:

- ▶ Markov chains: non constructive
- ▶ Constructive proof with additionnal result:

Proposition

This balanced assignment is periodic of period bounded by $q^2q!$

q : number of workers

Thank you!