

Balanced assignments of periodic tasks

Héloïse Gachet

CERMICS, École nationale des ponts et chaussées
SNCF DTIPG

December 9th, 2024

Journée GOThA

Joint work with Frédéric Meunier

Introduction

Public transports: crew scheduling and rostering with fairness between workers
→ Balanced assignment of tasks to workers

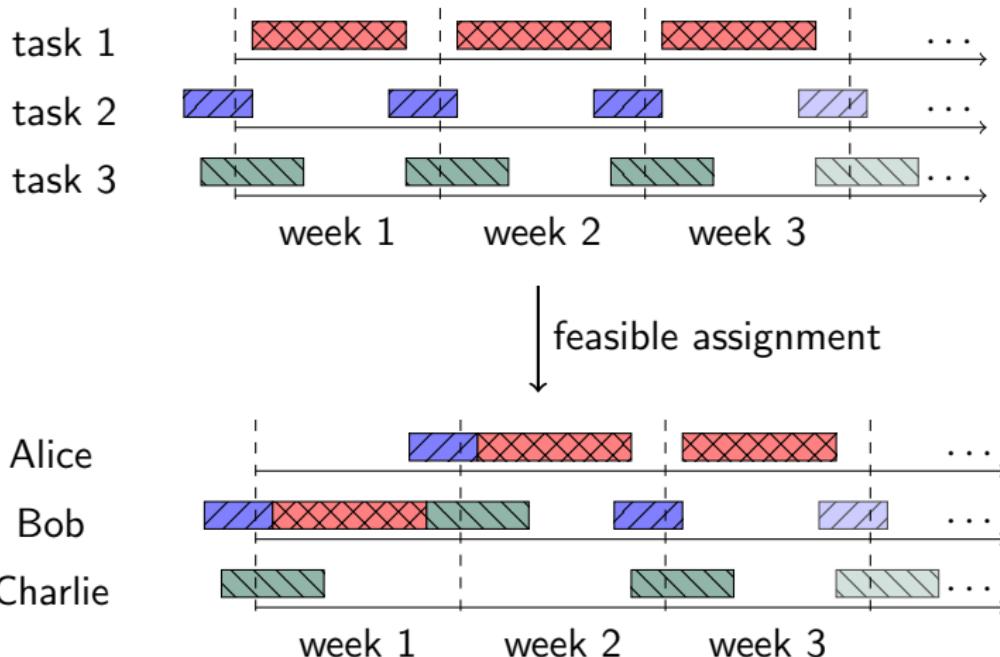
Input:

- Tasks to be performed at the same time every week
- Indistinguishable workers

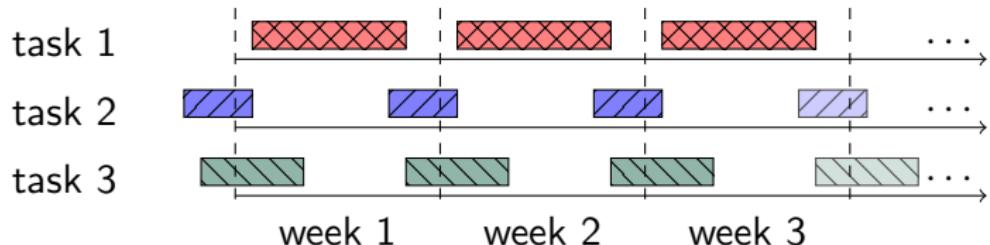
Output: Assignment of tasks to workers so that each worker performs each task with same asymptotic frequency

e.g., *Monday from 9:10 to 10:30, drive train 9015 from Paris to London with Alice, Bob, or Charlie*

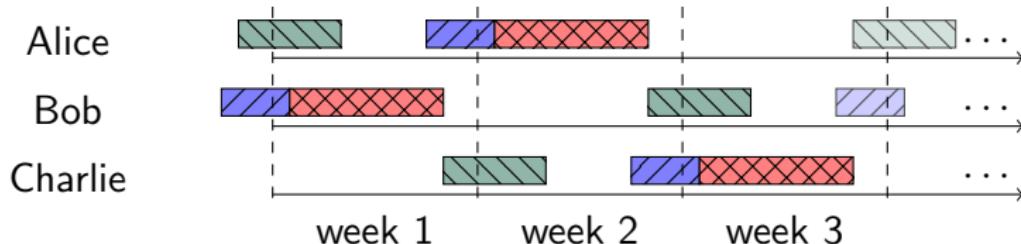
Feasible assignment



Balanced assignment: an example



balanced feasible assignment



Balanced assignment: formally

Input: n tasks to be repeated every week, q workers

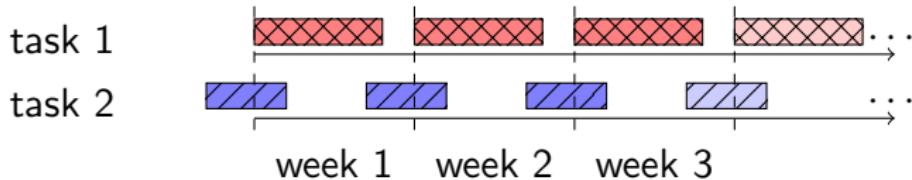
Assignment: $f: [n] \times \mathbb{Z}_{>0} \rightarrow [q]$, where $f(i, r) = j$ means worker j performs task i on week r

Feasible assignment: f is non overlapping

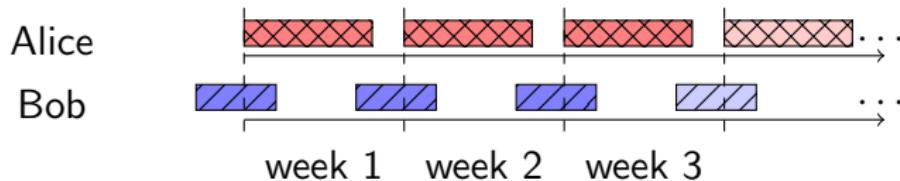
Balanced assignment:

$$\lim_{t \rightarrow +\infty} \frac{1}{t} \left| \{r \in [t] : f(i, r) = j\} \right| = \frac{1}{q} \quad \forall i, j$$

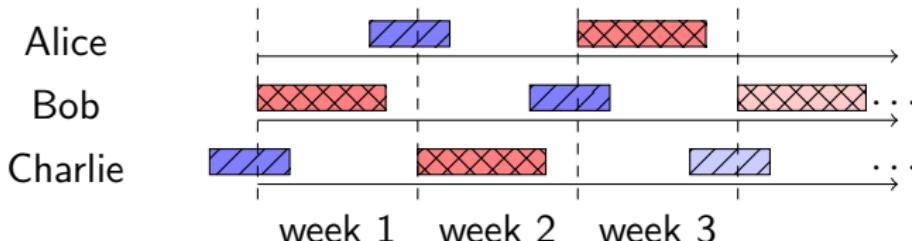
Balanced assignments: unachievable case



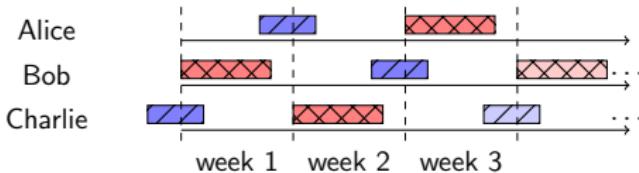
With 2 workers



With 3 workers



Main results



Theorem G.-Meunier 2024+

There exists a balanced feasible assignment if and only if there exists a feasible assignment with a worker performing each task at least once.

- Existence of a balanced feasible assignment with period q (number of workers)
- Deciding the existence of a balanced feasible assignment: polynomial problem
- Building a balanced feasible assignment: polynomial problem when q is bounded

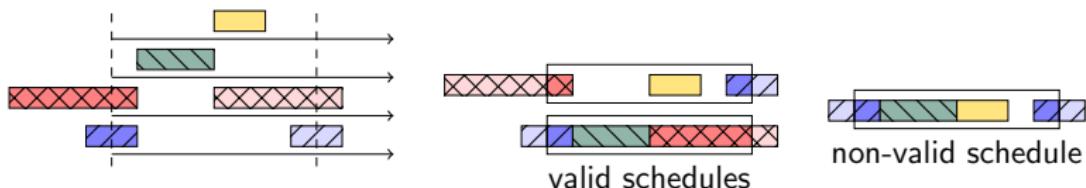
Extension

Input: n tasks to be repeated every week, q workers, \mathcal{S} set of valid weekly schedules

ex. All workers perform at most M tasks per week:

$$\mathcal{S} = \left\{ S : n^{\text{tasks}}(S) \leq M \right\}$$

With $M = 2$



Feasible assignment: f is non overlapping AND uses only allowed weekly schedules

Extension: results

Theorem G.-Meunier 2024+

If there exists a feasible assignment with a worker performing each task at least once and **all workers are busy at time zero**, then there exists a balanced feasible assignment.

- Existence of a periodic balanced feasible assignment with large period
- Examples where the additional condition is needed
- Deciding the existence of a balanced feasible assignment: open

Moving pebbles

Consider:

- graph $D = (V, A)$ with colored arcs, each color forming vertex disjoint cycles covering V
- one pebble on each vertex

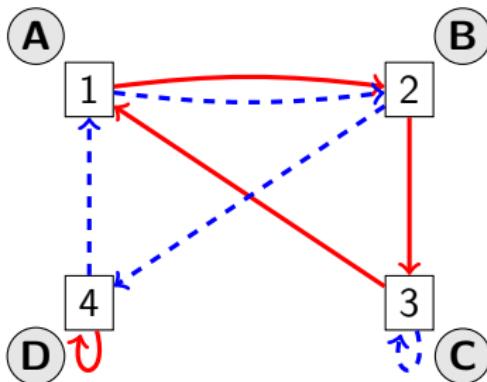
Sequence of **colors** defines sequence of **moves** of the pebbles

Color:

- Vertex = task at time zero
- Arc = valid schedule
- Pebble = worker
- Color c = partition of the tasks into schedules

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.



sequence of colors:
→ -> → -> → -> → -> →

arcs visiting:

	$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 1$	$4 \rightarrow 4$	$1 \rightarrow 2$	$2 \rightarrow 4$	$3 \rightarrow 3$	$4 \rightarrow 1$
A	0	0	0	0	0	0	0	0
B	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0
D	0	0	0	0	0	0	0	0

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	0	0	0	0	0	0	0
B	0	1	0	0	0	0	0	0
C	0	0	1	0	0	0	0	0
D	0	0	0	1	0	0	0	0

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	0	0	0	0	1	0	0
B	0	1	0	0	0	0	1	0
C	0	0	1	0	1	0	0	0
D	0	0	0	1	0	0	0	1

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	0	0	1	0	1	0	0
B	0	1	1	0	0	0	1	0
C	0	1	1	0	1	0	0	0
D	1	0	0	1	0	0	0	1

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	0	0	1	0	1	0	1
B	0	1	1	0	1	0	1	0
C	0	1	1	0	1	0	1	0
D	1	0	0	1	0	1	0	1

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> → -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	0	0	1	1	1	0	1
B	0	1	1	0	1	1	1	0
C	0	1	1	0	1	0	2	0
D	1	0	0	1	0	1	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	1	0	1	1	1	0	1
B	0	1	1	1	1	1	1	0
C	0	1	2	0	1	0	2	0
D	2	0	0	1	0	1	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	1	0	1	1	1	1	1
B	0	1	1	1	1	1	1	1
C	0	1	2	0	2	0	2	0
D	2	0	0	1	0	2	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

sequence of colors:

→ -> → -> -> → -> →

arcs visiting:

	1 → 2	2 → 3	3 → 1	4 → 4	1 → 2	2 → 4	3 → 3	4 → 1
A	1	1	1	1	1	1	1	1
B	1	1	1	1	1	1	1	1
C	0	2	2	0	2	0	2	0
D	2	0	0	2	0	2	0	2

Moving pebbles

Aim: Find a sequence of colors making each pebble visit each arc with same asymptotic frequency.

Theorem G.-Meunier 2024+

If the graph is strongly connected, then there exists a sequence of colors making each pebble visit each arc with same asymptotic frequency.

2 proofs:

- Markov chains: non constructive
- Constructive proof with additionnal result:

Proposition G.-Meunier 2024+

The constructed sequence of colors is periodic with period bounded by $q^2 q!$.

q : number of workers

Thank you